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A B S T R A C T

In this study, we established an air quality health index (AQHI) based on the associations between multiple air
pollutants and respiratory and cardiovascular outpatient department (OPD) visits to communicate the health
risks from air pollution in Bangkok, Thailand. The associations between various air pollutants, namely, sus-
pended particulate matter (PM) with an aerodynamic diameter smaller than 2.5 µm and 10 µm (PM2.5 and PM10,
respectively), sulphur dioxide (SO2), and ozone (O3) and the number of OPD visits for respiratory and cardio-
vascular diseases in Bangkok from 2016 to 2019 were assessed using generalised additive models with a Poisson
link function. Significant associations were established between most cases of cardiovascular and respiratory
diseases and these pollutants with a lag time of 0–7 days. The total excess risk was calculated to construct the
AQHI, which was then adjusted to an arbitrary scale and banded into four groups based on the calculated score,
where 1–3, 4–6, 7–10, and 10+ represented low risk, moderate risk, high risk, and very high risk, respectively.
We found that the AQHI captured both high and very high risk levels during the day for most stations. The
constructed AQHI also recorded a greater number of high and very high risk days than the currently used AQI but
fewer than the WHO-based AQI. Our findings suggest that the AQHI can capture the combined effects of multiple
air pollutants, which makes it an effective tool for communicating air pollution-related health risks.

1. Introduction

Ambient air pollutants are regarded as a major problem for public
health. A report from the World Health Organization (WHO) in 2006
revealed that 4.2 million people die from environmental air pollution
globally each year. Moreover, the results showed that 91 % of people
live in areas where the levels of air pollution exceed the WHO’s air
quality guidelines (WHO 2016, 2022). Long-term particulate matter
(PM) exposure can cause lower respiratory infections and cancer (Chen
and Hoek, 2020; Manisalidis et al., 2020; Nakharutai et al., 2022). The

effects of air pollution on public health are thus very serious, so it is
necessary to develop effective communication tools that can compre-
hensively assess daily air quality and predict the impact of air pollution
on health.

The air quality index (AQI) represents air quality categories ranging
from good to severe. It is commonly used as a tool to convert the
measured values of air pollutant concentrations into simple terms to
communicate, and facilitate an understanding of, the air quality in a
particular area. Many countries report daily air quality using the AQI
because it is easy to understand. However, numerous studies have
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revealed the weak points of the AQI, which mostly centre around the
additive effects of multiple air pollutants on health. The AQI represents
the air quality situation from the perspective of only an ultimate con-
centration of a single air pollutant in a day and does not capture the
combined health effects of multiple air pollutants. In addition, it does
not reflect the linear non-threshold concentration response relationships
between air pollutant exposure and health risks (Sicard et al., 2011,
2012; Stieb et al., 2008; Tan et al., 2021 Wang et al., 2022; Tang et al.,
2024).

To overcome concerns regarding the health risks associated with
multiple air pollutants, Health Canada and Environment Canada pio-
neered the development of the air quality health index (AQHI) (Stieb
et al., 2008), which is an effective tool that estimates the combined
health effects of exposure to multiple air pollutants. This index has been
adopted by many countries, such as South Africa (Cairncross et al.,
2007) and Sweden (Olstrup et al., 2019), and selected cities in China,
among them, Shanghai (Chen et al., 2013), Guangzhou (Li et al., 2017),
Tianjin (Zeng et al., 2020), and Hong Kong (Wong et al., 2013). A
nationwide AQHI was subsequently developed in China based on the
data of 272 major Chinese cities (Du et al., 2020). Most studies have
compared the AQHI to the AQI, and the results have shown that the
AQHI has a stronger association with health outcomes over the short
term and can predict mortality and morbidity more accurately (Chen
et al., 2013). Because the AQHI is a smart air quality index that is better
than the AQI for communicating air pollution-related health risks, it is
beneficial for policymakers to use the AQHI as a tool to help protect
people from the acute health impacts of air pollution.

Bangkok, the capital city of Thailand, has high levels of air pollution
from various sources, including traffic, industry, and transcity open crop
burning (Tesfaldet and Chanpiwat, 2023; Wang et al., 2020). The city
has 12 air monitoring stations based on the United States Environmental
Protection Agency (US EPA) standard, and these are maintained by the
Thai Pollution Control Department (PCD). In addition, like other capital
cities, the population density in Bangkok is high, at 5294.3 per square
kilometre. An annual report from the PCD showed that Bangkok has
faced an air pollution problem for a long period, and it is worse in the
winter season (October–February). Generally, Thai people perceive air
quality based on the AQI, where the score is divided into five air quality
levels with five colours depending on the severity of the pollution: blue
(0–25), green (26–50), yellow (51–100), orange (101–200), and red
(>200). Bangkok has over 100 hospitals located around the city, and
these are administered by different organisations, such as the Ministry of
Public Health, the Ministry of Higher Education, Science, Research and
Innovation, and the local government. The primary obstacle to health
data collection in Bangkok is the reporting of the individual hospitals
into the central management system. For example, data obtained from
the system may not be complete. We thus proposed an area-based study
to develop a Bangkok AQHI using the health data from the individual
hospitals located in the selected area and to link these with the daily air
quality in the city.

The aim of the present study was therefore to develop an AQHI based
on the associations between outpatient department (OPD) visits for
cardiovascular and respiratory diseases and the air pollutants in
Bangkok from 2016 to 2019. This study will increase the understanding
of the air quality situation in the city and provide a scientific risk
communication tool based on pollution-related health effects. We also
expect the results of this study to be used as an effective tool to
communicate health risks from air pollution in Thailand.

2. Data and methodology

2.1. Study area

Bangkok is located in the Chao Phraya River delta in central Thailand
and has an estimated population of over 10 million. The city occupies
7762 km2s (Chalermpong, 2007; Thanvisitthpon et al., 2018) and has a

tropical climate with three distinct seasons: summer (March–May),
rainy (May–October), and winter (October–March). The period March-
–May is the warmest, with air temperatures reaching 40 ◦C (United
Nations Environment Programme, 2009). Bangkok is currently divided
into 50 administrative districts under the authority of the Bangkok
Metropolitan Administration (BMA), which is the local government of
Bangkok. The district subgroups can be divided into six groups: central,
northern, southern, eastern, northern Thon Buri, and southern Thon
Buri. The healthcare system is complicated. Over 100 hospitals are
distributed around the city and administered by different organisations,
such as the Ministry of Public Health, the Ministry of Higher Education,
Science, Research and Innovation, and the local government. For this
study, we decided to collect health data from individual hospitals for
analysis and selected particular areas for this purpose. The representa-
tive areas we chose for this study were the central BMA districts of
Ratchathewi, Phaya Thai, Dindang, Dusit, Phranakorn, Huai Khwang,
Wang Thonglang, Pom Prap Sattru Phai, and Samphantawong. Many
hospitals, which are managed by diverse government agencies and the
private sector, are located in this area (Fig. 1). There are various types of
land use and activities, including sensitive areas, such as hospitals,
preschools, schools, and universities. The central BMA districts face air
pollution problems continuously, particularly during the winter season
(November–February) each year (Fig. 2).

2.2. Exposure and health outcomes

2.2.1. Air quality data
We obtained the air quality data from 13 air quality monitoring

stations located at several places in Bangkok, Thailand. The data sets
were organised by Thailand’s PCD for 12 stations and the BMA for one
station. Six of the stations were located within 10 m of the road and were
classified as roadside stations, while the other seven were situated in
residential areas (Table 1). Due to the large amounts of missing data
(generally >90 %), stations 50t and 53t were excluded from our anal-
ysis. The concentrations of suspended particulate matter (PM) with an
aerodynamic diameter smaller than 2.5 µm (PM2.5) and 10 µm (PM10)
were measured using the Beta Attenuation Monitor 1020, as recom-
mended by the EPA. The ozone (O3), sulphur dioxide (SO2), nitrogen
dioxide (NO2) and carbon monoxide (CO) concentrations were
measured using ultraviolet absorption photometry, ultraviolet fluores-
cence, cavity attenuated phase shift spectroscopy and Non-Dispersive
Infrared Detection techniques. The corresponding atmospheric data,
including atmospheric pressure, relative humidity, and temperature,
and each station’s location coordinates were also retrieved. All the air
pollutant monitoring equipment used met the requirements of the PCD
and the standards of the US EPA.

2.2.2. Time-series variations and spatial interpolation for the air quality
data

Time-series plots are beneficial for displaying oscillations in
pollutant concentrations that change across various timescales. The
diurnal, weekday, and intra-annual variations of the time-series plots
were used to present the situations for PM2.5, PM10, O3, SO2, NO2, and
CO.

To link the air pollution data with the health data from the hospitals,
we used two approaches: (1) we manually assigned the air monitoring
station data, and (2) we performed inverse distance weighting (IDW)
using the data from all 11 stations. First, we constructed a distance
matrix between the centroid of the area related to the postcode of the
central BMA and the 11 air monitoring stations. To interpolate the air
quality concentrations at the centroid of the area, we then performed the
IDW methods described by Shepard (1968).

2.2.3. Sources of health effects data
As the main outcomes data, the number of OPD visits due to respi-

ratory and cardiovascular diseases from the 24 tertiary hospitals located
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around the Bangkok Municipality were collected after obtaining
approval from the ethics committees of the Faculty of Tropical Medicine,
Mahidol University (COA no MUTM2022–003–02-YMID_M_64_003),
Rajavithi Hospital (023/2565), Chulalongkorn University Faculty of
Medicine (1386/2022), the BMA (AL04.1), and the naval medical
department (046 COA-NMD-REC 046/65), as well as permission from
the different hospitals. Nine hospitals were located in the central district
area (Fig. 1). The data were obtained from the medical records depart-
ment or information technology division of each hospital and exported
as individual patient data in text files with de-identified (hashed) hos-
pital numbers. We prepared the health data by separating the postcodes
related to the central BMA districts. The postcodes of the central districts
are 10,100, 10,200, 10,300, 10,310, and 10,400. The centroid of the
boundary of each postcode was designated the exposure area and linked

with the health data. The OPD visits were recorded and coded by
medical coders using the 10th revision of the International Statistical
Classification of Diseases and Related Health Problems-Thailand Modi-
fication (ICD-10-TM) after physician diagnoses. The patient records with
respiratory and cardiovascular morbidity identified as J00-J99 and I00-
I99, respectively, were retrieved from each hospital.

The patient data for the period 1 January 2016 to 31 December 2019
(i.e. before the COVID-19 pandemic) were retrieved. The diseases and
symptoms were identified and classified into respiratory (i.e. bronchitis,
common cold, chronic obstructive pulmonary disease [COPD] with
acute exacerbation, overall asthma, overall COPD, pharyngitis, and
upper respiratory tract infection) and cardiovascular diseases (i.e. heart
failure, arrythmia, haemorrhagic stroke, all ischaemic heart diseases
[IHDs], acute coronary syndrome, subacute coronary syndrome, pe-
ripheral arterial disease, hypertension, ischaemic stroke, and overall
stroke). The total number of hospital visits per day for each disease
group was calculated for each exposure area. Some patients may have
visited more than one hospital in a day, that would have resulted in an
overestimation of the number of visits, as the identifying personal data
were not available for duplication checks. However, the unit of analysis
was the daily number of visits, so we postulated that the likelihood of
patients visiting multiple hospitals on the same day was low.

2.2.4. Missing data imputation
No data were missing from the medical records since the ICD-10-TM

codes, which are generally used for reimbursement, were the only data
required. For the missing air quality data, we used the multivariate
imputation by chained equations (MICE) method described by Buuren
and Groothuis-Oudshoorn (2011). The parameters used were date, hour,
wind speed, temperature, humidity, latitude and longitude of the air
monitoring station, PM2.5, PM10, O3, SO2, NO2, and CO. To select the
appropriate imputation for each parameter, the convergence was

Fig. 1. District map of Bangkok, Thailand, with locations of air quality monitoring stations and hospitals.

Fig. 2. Summary of the number of days pollutants (PM2.5: and PM10: )
exceed the standard for all air quality monitoring stations in Bangkok, Thailand.
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assessed virtually by plotting the means of the parameters against the
number of iterations. The missing continuous variables of the hourly
pollution concentrations were imputed using the predictive mean
matching method with MICE. The imputed data were then calculated as
the average daily air pollution concentrations.

2.3. Associations between air pollutants and morbidity (OPD visits for
cardiovascular and respiratory diseases)

The continuous atmospheric data (i.e. the daily concentrations of
PM2.5, PM10, SO2, O3, temperature, relative humidity, and wind speed)
were described using the corresponding means and standard deviations
(Table 2). The associations between the daily ambient concentrations of
PM2.5, PM10, SO2, and O3 and the daily OPD visits due to respiratory and
cardiovascular diseases were assessed using Poisson regression. Gener-
alised additive models with a Poisson link function were applied to
obtain the coefficients of the concentration–response relationship using
a single pollutant model:

where respiratory/cardiovascular is the number of OPD visits on day t,
Xi is the concentration of the pollutant (PM2.5, PM10, SO2, and O3), βi is
the regression coefficient for Xi, ns () indicates a smoother based on
penalised smoothing splines (this captures the nonlinear relationships of
the covariates of the time trend and the weather parameters with OPD
visits), and df is the degree of freedom. The daily mean temperature and
relative humidity were used in all the models to control for confounding.
The adjusted variables in the models were Thai national holidays,
weekends, and atmospheric parameters (i.e. temperature, relative hu-
midity, and wind speed). The incident rate ratios with their corre-
sponding 95 % confidence intervals (CIs) were then calculated and
accounted for lag times of 0–7 days because associations were found
between PM2.5, PM10, SO2, and O3 and respiratory and cardiovascular
diseases up to 7 days after exposure. The statistical significance was
determined based on a p-value of 0.05. We adjusted the covariates: (1)
an indicator variable for ‘day of week’ to account for possible variations
in the week and (2) natural smooth functions with 6 df for the present-
day temperature and 7 df for the present-day relative humidity to

Table 1
Location of air quality monitoring stations.

Station ID Station Name Description Lat Lon

02t Bansomdejchaopraya Rajabhat University Hiran Ruchi, Khet Thon Buri Residential area 13.7328 N 100.4877 E
03t Highway NO.3902 km.13 + 600 Kanchanaphisek Rd, Bang Khun Thian Roadside 13.6365 N 100.4143 E
05t Thai Meteorological Department Bang Na, Khet Bang Na Residential area 13.6662 N 100.6057 E
10t National Housing Authority Klongchan Khlong Chan, Khet Bang Kapi Residential area 13.7799 N 100.6460 E
11t National Housing Huaykwang Din Daeng, Khet Din Daeng Residential area 13.7755 N 100.5692 E
12t Nonsi Witthaya School Chong Nonsi, Khet Yannawa Residential area 13.7081 N 100.5473 E
50t Chulalongkorn Hospital Rama IV Rd. Khet Pathum Wan Roadside 13.7299 N 100.5365 E
52t Thonburi Power Sub-Station Intarapitak Rd. Khet Thon Buri Roadside 13.7276 N 100.4866 E
53t Chokchai Police Station Lat Phrao Rd. Khet Wang Thonglang Roadside 13.7954 N 100.5930 E
54t National Housing Authority Dindaeng Din Daeng Rd. Khet Din Daeng Roadside 13.7925 N 100.5502 E
59t The Government Public Relations Department Phaya Thai, Khet Phaya Thai Residential area 13.7832 N 100.5405 E
59ts Ratchathewi District Office, Bangkok Phayathai Roadside, Ratchathewi Roadside 13.7592 N 100.5349 E
61t Bodindecha Sing Singhaseni School Pubpla, Khet Wang Thonglang Residential area 13.7697 N 100.6146 E

Table 2
Distribution of air pollutants and atmospheric parameters.

Station Ambient Concentration and Atmospheric Data Median [Min, Max]

PM10 PM2.5 NO2 SO2 CO O3 Wind Speed Temperature Humidity

02t 36.0 [1, 340] 19.0 [2,
167]

9.00 [0, 89.0] 1.08 [0.00,
4.38]

0.55 [0.08,
1.64]

12.0 [0,
117]

0.500 [0, 6.30] 29.9 [17.9,
39.7]

63.0 [20.0,
90.0]

03t 56.0 [3, 466] 28.0 [2,
287]

26.0 [0, 169] 1.13 [0.38,
3.25]

0.69 [0.11,
3.19]

4.00 [0,
107]

1.10 [0, 6.10] 28.8 [15.7,
47.4]

NA [NA, NA]

05t 32.0 [3, 273] 17.0 [1,
173]

13.0 [0, 114] 1.46 [0.00,
6.42]

0.49 [0.05,
1.38]

17.0 [0,
133]

1.40 [0.100,
5.80]

28.5 [16.1,
38.1]

74.0 [20.0,
99.0]

10t 31.0 [3, 188] 17.0 [1,
114]

15.0 [0, 146] 2.63 [1.38,
5.83]

0.77 [0.36,
1.70]

17.0 [0,
177]

0.80 [0, 4.10] 29.3 [16.3,
39.0]

NA [NA, NA]

11t 29.0 [1, 188] 18.0 [1,
105]

24.0 [1.00,
111]

2.29 [0.00,
6.04]

0.83 [0.20,
2.00]

16.0 [0,
182]

0.50 [0, 2.80] 29.1 [16.6,
39.5]

62.0 [4.00, 100]

12t 44.0 [1, 297] 17.0 [1,
110]

21.0 [1.00,
103]

1.38 [0.00,
8.54]

0.65 [0.09,
2.49]

11.0 [0,
132]

0.60 [0, 2.70] 29.8 [18.2,
41.7]

77.0 [15.0, 100]

52t 38.0 [2.00,
300]

21.0 [1,
148]

15.0 [0, 119] 1.33 [0.00,
5.54]

0.62 [0.03,
1.67]

14.0 [0,
141]

0.60 [0, 4.10] 29.1 [17.3,
38.5]

67.0 [16.0,
99.0]

59t 29.0 [0, 300] 17.0 [1,
168]

13.0 [0, 120] 1.75 [0.79,
4.42]

0.67 [0.02,
2.14]

21.0 [0,
158]

0.50 [0, 2.20] 28.3 [16.4,
47.0]

70.0 [15.0, 100]

59ts 41.0 [0, 193] 22.0 [0,
133]

23.0 [1.00,
112]

1.83 [0.79,
4.63]

0.75 [0.13,
5.00]

9.00 [0,
104]

0.40 [0, 0.900] 29.9 [16.0,
42.0]

64.0 [16.0, 101]

61t 35.0 [1, 179] 19.0 [1,
149]

12.0 [0, 107] 2.29 [0.00,
7.33]

0.75 [0.37,
1.90]

16.5 [0,
178]

0.70 [0, 3.70] 28.9 [6.00,
39.5]

NA [NA, NA]

Overall 39.0 [0, 466] 20.0 [0,
287]

17.0 [0, 195] 1.75 [0.00,
8.54]

0.71 [0.02,
5.54]

14.0 [0,
182]

0.60 [0, 6.30] 29.2 [6.00,
47.4]

67.0 [4.00, 101]

NA = Not Available.

log[ respiratory / cardiovascular] = βi∗(Xi)+wkday+ns( humid, df=7)+ns(Temp, df= 6)+ holiday (1)
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control for the potential nonlinear confounding effects of weather con-
ditions. To select the most appropriate degree of freedom for a natural
spline, generalised cross-validation (GCV) was used to compare the
goodness of fit between the various degrees of freedom. The degrees of
freedomwith the lowest GCV rounded to the integer were selected as the
most suitable degrees of freedom for humidity and temperature, as
shown in Fig. 3. We used the Akaike information criteria (AIC) to check
robustness. The model with the lowest AIC was the single air pollutant
model with temperature and humidity.

We assessed a variety of single-day lags of air pollutant concentra-
tions from 0 to 7, that is, same day exposure (lag 0), exposure the pre-
vious day (lag 1), exposure 2 days previously (lag 2), exposure 3 days
previously (lag 3), exposure 4 days previously (lag 4), exposure 5 days
previously (lag 5), exposure 6 days previously (lag 6), and exposure 7
days previously (lag 7). Finally, the lag that achieved the strongest effect
estimate was used to develop the AQHI in this study (Li et al., 2017;
Stieb et al., 2008).

To further develop the AQHI, we used the coefficients from the

single-pollutant model. We subsequently predicted the excess risk (ER),
which was defined as the percentage increase in daily OPD visits for each
10 µg/m3 increase in PM10 and PM2.5, and each unit ppb increase in SO2
and O3 with 95 % CIs. The ER was calculated using the following
formula:

ERit = 100∗[exp(βi∗Xit) − 1] (2)

where ERit represents the percentage change in morbidity associated
with the ith pollutant on the tth day, βi is the regression coefficient of
pollutant i in the single-pollutant model, and Xit is the concentration of
the pollutant i on the tth day.

2.4. Construction of the AQHI

The AQHI for all the air monitoring stations in Bangkok was con-
structed after calculating the total daily ER using the following formula:

AQHI = 10/c ∗ dailytotal ERt (3)

Fig. 3. Degrees of freedom for humidity(a), and temperature (b).
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where the daily total ERt expresses the sum of ERit of the OPD visits
associated with the ith pollutant on the tth day, and c is the maximum
value of ERt. A time series of daily AQHI values was created on a nu-
merical scale from 0 to 10+ (Stieb et al., 2008).

The AQHIs were banded into four groups based on the calculated
score, where 1–3, 4–6, 7–10, and 10+ represented low risk, moderate
risk, high risk, and very high risk, respectively.

All the statistical analyses were conducted in R software, version
3.4.2. (R Core Team, Austria).

3. Results and discussion

3.1. Temporal variations in ambient air pollutants

Variations in the ambient air pollutants (PM10, PMcoarse, PM2.5, CO,
SO2, NO2, O3) were calculated by averaging the hourly concentrations
for each period to view the fluctuations in the diurnal, weekday, and
intra-annual variations, which represented the air quality situation for
each area where the air monitoring stations were located across Bangkok
using the time-series plot (Figs. S1–S11). The PM2.5 trends were higher
than those of PMcoarse during the period of high PM2.5 concentrations
(October–April) and lower in the low PM2.5 season (May–September).
This was observed at stations 02, 03, and 54t, while the trend of PMcoarse
at station 12t was higher than that of PM2.5 for all periods. The PM in the
diurnal cycle related to the different sources or factors that affected the
measured concentrations of PM at each station. For example, at the 02t
station, fuel combustion from traffic resulted in increased concentra-
tions of PM2.5, CO, and NO2 (only in the mornings). Peaks in PM10
hourly concentrations were observed at 8 a.m., 2 p.m., and 11–12 p.m.,
while PM2.5 had no peaks in the afternoon. This suggested that the factor
affecting the peak concentrations of PM10 and PM2.5 in the morning and
at night were the same, whereas the peak of PM10 in the afternoon was
different because PMcoarse, which is a component of PM10, showed a
peak in the afternoon. Generally, the sources of PMcoarse are mechanical
activities, such as the dispersion of fugitive dust from wind and con-
struction. At the 02t monitoring station, the construction of the MRT
Gold Line and Blue Line or another source may have contributed to the
PM10 readings. The diurnal cycle pattern did not differ during the days
of the week, and the lowest concentration was observed on Sundays.
Monthly variations showed that the trend of PM concentrations for the
period May–September was lower than that for the October–April
period. In terms of diurnal variations in NO2, the NO2 peak occurred
once in the morning and once at night, which was the same as that for
PM2.5 and corresponded with fuel combustion from traffic. The NO2
concentrations decreased on Saturdays and Sundays. O3, the secondary
pollutant generated from photochemical reactions, peaked at 1–2 p.m.
each day. The pattern of diurnal variation of CO was similar to those for
PM10, PM2.5, and NO2, while the peak of SO2 was observed only in the
morning. This indicated that the main factor inducing the CO peak in the
morning and at night, including the SO2 peak in the morning, was fuel
emissions from traffic. Another key factor affecting the peak of pollut-
ants at night was the reduction in the mixing height, which led to lower
pollutants in that area of the 02t monitoring station.

At the 03t station, the main factor contributing to all the PM and
gases may have been traffic, especially along Kanchanapisek, Rama II,
and Ekkachai roads. The highest concentrations of PM10 and PM2.5
presented at 8 a.m. and then decreased until 2 p.m. The second cycle
started at 10–12 p.m. and decreased again until 4–5 a.m. This diurnal
cycle pattern did not differ between the days of the week, but the lowest
concentrations were observed on Saturdays and Sundays. The monthly
variations showed that the PM concentration trend for the period
May–September was lower than that for October–April. O3 peaked at
1–2 p.m. on all days. The NO2 peak occurred only at 6 p.m., which may
have been the result of the photochemical reactions of O3 and NO In
addition, volatile organic compounds are a precursor that reacts with

free radicals (hydroxyl radical) in the atmosphere to produce RO2 and
HO2, which can react with NO and eventually convert to NO2. Another
source of NO2 in the evening may have been the secondary road of
Ekkachai Road (Soi 94–96), along which many industries and a large
community are located. The diurnal variations of CO were the same as
for PM10, PM2.5, and PMcoarse in that CO peaked at 8–9 a.m. and 8–9 p.m.

At the 05t station, all the pollutants peaked twice: once in the
morning (8 a.m.) and once at night (8–10 p.m.). In the morning, the
PMcoarse concentration remained at a high level until 12 a.m., while the
PM10, PM2.5, CO, and NO2 levels started to decrease at 10 a.m. This
implies that traffic influenced the high concentrations in the period 8–10
a.m., and another mechanical factor was responsible for the increasing
concentrations of PM larger than 2.5. The peak variations for all the
pollutants, except NO2, in the morning were higher than those at night.
This may have been caused by the photochemical reactions of O3 and NO
in the afternoon, which resulted in the elevated concentration of NO2 at
night. SO2 had fewer diurnal variations. Small peaks occurred
throughout the day and night, so traffic may not have been a major
contributor to the SO2 concentrations. These small fluctuations may
have been caused by other emissions near the station.

For the 10t station, the pattern of diurnal variations did not differ
from that of the 05t station, while for the station 11t, an NO2 peak was
observed at 8 p.m., which was different from the peaks of the other
pollutants at 10–11 p.m. The cause may have been the photochemical
reactions of NO and O3 in the afternoon. The peak of CO at night was
higher than that in the morning, which resulted from other conditions,
such as fuel combustion, household cooking, and the cooking of street
food at night markets. These offer strong reasons for the higher CO
concentrations compared to the SO2 concentrations from evening to
night. The CO concentrations did not peak during that time because
most of the fuel used for cooking has no sulphur, so it differs from the oil
fuel used in vehicles, of which sulphur is a component. The SO2 con-
centrations measured at night were low.

The diurnal PM variations were quite stable at the 12t station. The
peak of NO2 at night (7 p.m.) was higher than that in the morning (7 a.
m.). This implies that traffic in the morning could have contributed to
lowering the NO2 concentrations more than photochemical reactions.
The PM10 concentrations tended to be higher than 120 µg/m3, and the
monthly variations in PMcoarse tended to be higher than those of PM2.5
throughout the year.

The station 52t is located on a roadside, so the main source of all the
pollutants was traffic. The construction of the MRT line caused the high
concentrations of PM10 and PM2.5 in the same way as for station 02t The
diurnal variations of PM10, PM2.5, PMcoarse, NO2, CO, and SO2 had two
peaks, one in the morning (8–9 a.m.) and one at night (7–10 p.m.), with
the morning concentration higher than that at night. Our results showed
that the main source of all the pollutants at the station was fuel com-
bustion from traffic. Similarly, the peak of NO2 at night was higher than
that in the morning and was induced by the photochemical reactions of
NO and O3.

For the station 54t, the PM10, PM2.5, PMcoarse, and CO concentrations
started at 6 a.m. and peaked at 10 a.m. before decreasing continuously
until 4 p.m. They subsequently peaked again at 9–10 p.m. The CO peaks
in the morning and at night were observed earlier than the other PM
peaks. This may have been caused by secondary particles or other factors
that collected PM. An analysis of the secondary PM is recommended.

At station 59t, none of the PM peaks were clear. PM2.5 tended to
increase at 8–10 a.m. and decrease in the afternoon. On the other hand,
PM2.5 and PM10 were low in the morning but tended to increase at 2–5 p.
m. CO peaked during the two periods 8–9 a.m. and 8–9 p.m. and was
generated from incomplete combustion, such as traffic. However, the
diurnal variations for station 59t were low. The station may thus have
had some conditions or buffers that could maintain the PM levels, as the
PM concentrations were quite stable throughout the day.

For the 61t station, the NO2 peak started earlier (8–9 p.m.) than those
of the other pollutants at night (10–11 p.m.). This may have been caused
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by the photochemical reactions of O3 and NO2. The PM2.5, PM10, and O3
levels tended to be higher than the National Ambient Air Quality Stan-
dards (NAAQS). The most likely sources were the main roads on the east
and southeast sides of the station (Ramkamhaeng and Romklao roads).
The patterns of concentration variations of the air pollutants implied
correlations between the source emissions for each pollutant in all the
areas. Time variations can be applied to present the trends, cycles, and
magnitudes of pollutants (Hayes et al., 2013; Kanchanasuta et al., 2020;
Munir et al., 2017; Szulecka et al., 2017).

3.2. Associations between air pollutants and respiratory and
cardiovascular OPD visits

In this study, we assessed the associations between PM2.5, PM10, O3,
and SO2 and respiratory diseases. The daily ambient concentrations of
the air pollutants were linked to the number of OPD visits at 24 hospitals
in Bangkok, and the air pollutant concentrations were generally as high
as the WHO standards for ambient concentrations of air pollutants. We

observed a significant association between the daily concentrations of
PM2.5, PM10, O3, and SO2 and respiratory diseases, namely, bronchitis,
the common cold, COPD with acute exacerbation, overall asthma,
overall COPD, pharyngitis, pneumonia, and upper respiratory infection,
with a lag time of 0–7 days following exposure. We similarly noted lag
times of 0–6 days for PM10 and O3 and 1–5 days for PM2.5 in cases of
status asthmaticus (Fig. 4). No association was detected between SO2
and status asthmaticus and pneumonia.

A significant association was observed with respect to the cardio-
vascular diseases heart failure, arrythmia, all IHDs, subacute coronary
syndrome, hypertension, and overall stroke and the daily concentrations
of PM2.5, PM10, O3, and SO2, with a lag time of 0–7 days following
exposure. Haemorrhagic and ischaemic stroke similarly showed signif-
icant associations with PM2.5 and PM10; however, the lag times were 0–4
days for PM2.5 and PM10 and 0–7 days for O3 and SO2. No association
was observed between these pollutants and peripheral arterial disease.
Our results indicated that lag 0 had the strongest association with most
cases of respiratory and cardiovascular diseases, so lag 0 was selected to

Fig. 4. Association between daily concentration of PM2.5 (a), PM10 (b), O3 (c) and SO2 (d) and Diseases Group at Lag 0 to 7 days.
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determine the coefficient (β) and further develop the AQHI.
Several previous studies have reported positive associations between

the air pollutants PM2.5, PM10, and NO2 and respiratory diseases,
including COPD (Park et al., 2021), respiratory mortality (Areal et al.,
2022), and bronchitis (Cai et al., 2014), but these links have not been
observed for O3. The effects of these air pollutants that increase the
likelihood of respiratory diseases could be explained through the stim-
ulation of the autonomic nervous system and inflammation processes
(Wu et al., 2018). An in vitro study illustrated that exposure to PM led to
inflammation of the endothelial cells by various mechanisms, including
anti-tissue factor antibody synthesis, reactive oxygen species produc-
tion, and the Nox-4 enzyme (Terzano et al., 2010). Following exposure
to air pollutants, systemic vasoconstriction is augmented (Wu et al.,
2018). Zhang et al. (2022) studied the association between short-term
exposure to PM2.5 constituents and hospital admissions for cardiovas-
cular diseases. The effects of exposure to different PM2.5 constituents
produced variable risks of hospital admissions. The results showed that
exposure to NH4+ was associated with the highest risk of IHD and

ischaemic stroke, while polycyclic aromatic hydrocarbons were pre-
dominately associated with ischaemic stroke only. This therefore im-
plies that PM2.5 from various sources has different health outcomes
depending on the constituents. O3, a toxic air pollutant, can be found in
urban areas, especially those with heavy traffic, and can cause damage
to the bronchial and alveolar epithelial cells and thereby affect pulmo-
nary function. A study by Lei et al. (2019) reported an association be-
tween O3 and respiratory disease in the short term. Moreover, every 10
μg/m3 increase in O3 has been associated with a 0.05 % (95 % CI: 0.42
%–0.53 %) and 2.22 % (95 % CI: 0.56 %–3.90 %) increase in
non-accidental and respiratory deaths, respectively. This may be
because O3 exposure can induce stress-related responses in the respira-
tory tract epithelia and thus produce symptoms of mucosal irritation and
airway inflammation (Mudway and Kelly, 2004; Valacchi et al., 2004)
and eventually induce respiratory diseases (Paffett et al., 2015; Raza
et al., 2018). Several studies have also found that short-term O3 expo-
sure is associated with platelet activation and increased blood pressure,
which may affect cardiovascular health over time and cause heart

Fig. 4. (continued).
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disease, high blood pressure, and stroke (Day et al., 2017; Han et al.,
2016) as well as an increased risk of non-accidental death. Additionally,
a study by Nascimento et al. (2020) confirmed associations between SO2
and PM10 and acute respiratory diseases. The authors indicated a greater
risk of acute respiratory events due to SO2 exposure, with a relative risk
of 1.28 (95 % CI: 1.22–1.34), and PM10 exposure, with a relative risk of
1.14 (95 % CI: 1.09–1.20), with a lag of 0 (i.e. on the day of exposure). A
recent study reported an increased risk of asthma mortality with acute
exposure to SO2 in the Chinese population (Liu et al., 2023). The ER for
each 10 μg/m3 increase in SO2 concentration was 7.78 % (95 % CI:
4.16–11.52 %) with a 7-day lag.

The results of our study support the possible effects of PM2.5, PM10,
O3, and SO2 on respiratory and cardiovascular diseases in Asian pop-
ulations. In addition, we demonstrated the advantages of using the ICD-
10-TM to monitor the health effects of air pollutants. However, the
support systems for health data collection should be managed homo-
geneously so that data can be made available for research with little
effort.

3.3. Constructing the AQHI and comparisons with the conventional and
WHO-based AQIs

One of the strengths of this work is the selected air pollutants.
Furthermore, only the predominant urban air pollutants were included
to establish the AQHI, which makes the AQHI more representative of the
health effects of air pollution in the central districts of Bangkok because
the latter are the primary location for shopping malls, large department
stores, entertainment zones, temples, commercial communities, private
offices, government offices, universities, schools, hospitals, etc. The
pattern of activities thus makes this area a crowded zone. The traffic
problems in Bangkok are considered among the worst in cities globally,
and traffic is the main cause of air pollutants. PM2.5 and PM10, which
stem from the combustion of fuel, are the main pollutants affecting the
air quality of urban areas, and O3 is the secondary pollutant (Guan et al.,
2023). The sulphur content of the diesel fuel used for transportation in
Thailand is controlled, and the measured value from the air monitoring
stations around Bangkok did not exceed the hourly standard of 300 ppb.
However, our statistical analysis indicated a strong association between
the daily average concentration of SO2 and adverse health outcomes.
This may be due to the synergistic effects of SO2 and PM (Yun et al.,
2015). Based on our findings, the present AQHI for Bangkok included
PM2.5, PM10, SO2, and O3. The selection of these pollutants for our AQHI
was different from those of other AQHIs due to the use of local health
statistics and air pollution data. In Canada, three pollutants (i.e. NO2,
O3, and PM2.5) were considered in the development of the AQHI (Stieb
et al., 2008). The AQHI for South Africa and Europe was also developed
frommultiple pollutants (Cairncross et al., 2007; Sicard et al., 2011) and
includes multiple exposures of fine PM (PM10, PM2.5) and other pollut-
ants. A study by Li et al. (2017) in Guangzhou, China, used PM2.5 to
represent PM due to the collinearity and health effects of PM10 and
PM2.5. This guideline also differs from the AQHIs of Canada (Stieb et al.,
2008), Shanghai (Chen et al., 2013a), and Hong Kong (Wong et al.,
2013) based on the included pollutants. The AQHI developed for
Shanghai comprises NO2, PM10, and PM2.5 (Chen et al., 2013a), while
SO2, NO2, O3, and PM10 were included in the AQHI for Hong Kong
(Wong et al., 2013). Many studies have reported correlations between
the predominant pollutants and the ERs for air pollutants, which fluc-
tuate in different areas. Zekun et al. (2015) reported that O3 took the
place of PM2.5 as the predominant air pollutant in Guangzhou in 2014.
The effects of SO2 and NO2 on mortality were also found to be higher
than those reported in Europe, the United States, and many cities in Asia
(Yu et al., 2012). The AQHI in this study could therefore provide more
sensible and appropriate predictions that reflect regional differences in
health risks stemming from short-term exposure to air pollution. Simi-
larly, Wang et al. (2022) revealed that at-risk people, such as older
adults, women, and people with respiratory diseases, are more

vulnerable to the short-term health effects of air pollution, and the
development of AQHIs for specific groups, such as those representing
age, gender, and diseases, is unnecessary. Meanwhile, Tang et al. (2024)
suggested that focusing constructed AQHIs on short-term adverse health
outcomes from air quality may result in the underestimation of their
cumulative impacts, although long-term health outcomes can be
assessed using the beta coefficients from the WHO because it is limited
by local health data. Reporting both short- and long-term health risks
has been recommended. Local hospital admission data could be used as
the health endpoint for short-term air exposure risks, while all-cause
mortality could be employed to determine long-term air exposure
risks. Notwithstanding, this is the first study to construct an AQHI for
Bangkok, Thailand, and to compare it with the currently used AQI and
the WHO-based AQI.

Time-series plots of the AQHI for all the air monitoring stations
operated by the PCD (10 stations) and BMA (59ts) were applied and
compared with the currently used AQI and the WHO-based AQI for the
period 2017–2021 (Fig. 5, S12–S21). The number of days in which the
risk levels were high and very high risk in our AQHI, the currently used
AQI, and the WHO–based AQI are presented in Table 3. The results show
that our AQHI captured both the high and very high daily risk levels for
all the stations except station 03t, so the number of days included in our
AQHI exceeded those of the currently used AQI for both high and very
high risk levels. The results for station 03t may have occurred because
the environment around the station differs from those of the other sta-
tions. The correlation between our AQHI and the currently used AQI
showed that our AQHI achieved a 95% stronger effect than the currently
used AQI for all stations. Some lower risk levels (i.e. <1 % for stations
02t, 05t, 12t, 52t, 59ts, and 61t, <2 % for station 54t, and <6.5 % for
station 03t) were obtained for our AQHI compared to the currently used
AQI (Table 4). Our results also showed that the constructed AQHI
covered a greater number of days with high and very high risk levels
than the currently used AQI but fewer than the WHO-based AQI. The
high-risk level captured by our AQHI was lower than that of the WHO-
based AQI, and the values of the WHO air quality guidelines are lower
than the NAAQS for each air pollutant. However, our AQHI was con-
ducted based on the association of the concentration of air pollutants
and local health data, which reflects the health risks for the people in the
area. The different risk levels between the constructed AQHI and the
currently used AQI resulted in a better understanding of the health risks
for the local population. For example, at station 02t, the number of days
where the risk levels were high based on our AQHI over 5 years totalled
about 265; however, the currently used AQI reported the same risk level
as our AQHI but for about 124 days. Accordingly, there were 141 days
during which people thought that they had moderate or good air quality
and could enjoy outdoor activities, but in fact the risk level was high.
Using our AQHI to report the health risks from air pollution in daily air
quality management and public health communications, especially for
at-risk groups, would be beneficial for policymakers, as its use would
help protect people’s health and provide suitable health messaging for
each population group based on real situations (Table 5).

A crucial limitation of this study was that the health data comprised a
non-registered commuter population. These people could therefore not
be classified by address. The use of postcodes may not have truly iden-
tified some groups because their offices and homes may have been
located in different areas. Notwithstanding, this study provides the first
step towards developing an AQHI to help ameliorate the acute health
effects of air pollutant exposure in Bangkok. In terms of improving the
system, a key issue regarding our AQHI was the health data collection, so
the next step would be to adjust the coefficient (β) used in Eqs. (2), 3,
and 4. The coefficient (β) was calculated from the individual data of each
pollutant and represented specific areas. The data were mostly quite
different from any other region or period (Wang et al., 2022). The health
data for all the subgroup districts should therefore also be collected and
analysed, and the AQHI equations should be adjusted to better represent
the entire city of Bangkok. Longitudinal studies will need to be
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Fig. 5. Time-series plots of the AQHI for air monitoring station 03t by year: (a) 2017, (b) 2018, (c) 2019, (d) 2020, (e) 2021. Red, blue and gray line represent the
constructed AQHI, currently used AQI and WHO based AQI respectively.
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conducted to track the effectiveness of our AQHI over time as well as its
applicability in different environmental conditions. Studies should be
conducted on the association between air pollution data and the health
of the local population at specific periods and in specific areas. Differ-
ences in the relationships between air pollution and health outcomes

among cities, regions, and countries mean that the AQHI of a specific
location cannot be directly applied to another city, region, or country.
Nevertheless, the AQHI can be used to accurately reflect the impact of
air quality on public health and to communicate the associated health
recommendations to local residents effectively. In terms of future works,

Fig. 5. (continued).

Table 3
The number of days related to high and very high risk in each index between 1 January 2017 – 31 December 2021.

Station High risk level (days) Very high risk level (days)

AQHI currently used AQI WHO based AQI AQHI currently used AQI WHO based AQI

02t 330 202 1370 8 6 662
03t 492 539 1783 3 34 1243
05t 475 259 1032 20 7 534
10t 705 201 1253 161 1 570
11t 643 168 1356 96 2 643
12t 359 211 1451 83 5 775
52t 543 350 1400 133 24 742
54t 843 484 1817 166 23 1172
59t 602 203 1113 135 3 518
59ts 401 184 1660 55 1 682
61t 734 257 1333 206 6 616
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we strongly recommend that multi-province studies that involve
different pollutant levels and local exposure–response models be carried
out so that localised AQHIs can be applied across Thailand.

4. Conclusion

In this study, we developed an AQHI for Bangkok, Thailand, based on
a comprehensive analysis of the associations between ambient air
pollutant criteria (PM2.5, PM10, O3, and SO2) and daily OPD visits for
respiratory and cardiovascular diseases in the central districts of
Bangkok. The established AQHI could be used to communicate the air
pollution-related health risks in Bangkok to the public and, in particular,
could be an effective tool that helps policymakers and relevant agencies
protect and manage at-risk groups during air pollution crises. We first
developed the AQHI by using data from the city’s central districts to
represent Bangkok because of the limitations of health data collection,
such as the obstacles to data centralisation by the authorised agency. We
therefore encourage policymakers to develop a health data collection
system to manage all data, as this will be beneficial in improving the
AQHI, and the resulting data analyses will assist in planning health
promotion policies and protecting the health of the people in Bangkok.

Table 4
The correlation between the AQHI and the currently used AQI during 1 January
2017 – 31 December 2021.

AQHI Category / Number of Days

Station Thai AQI
Category

1. Low
Risk
(1–3)

2. Moderate
Risk (4–6)

3. High
Risk
(7–10)

4. Very
High
Risk
(10+)

Total

02t 1. Low Risk
(0–50)

414 738 12 – 1164

2. Moderate
Risk
(51–100)

– 330 129 1 460

3. High Risk
(101–200)

– 14 124 58 196

4. Very High
Risk (201+)

– – – 6 6

Total 414 1082 265 65 1826
03t 1. Low Risk

(0–50)
87 494 2 – 583

2. Moderate
Risk
(51–100)

– 633 71 – 704

3. High Risk
(101–200)

– 120 323 62 505

4. Very High
Risk (201+)

– – – 34 34

Total 87 1247 396 96 1826
05t 1. Low Risk

(0–50)
492 743 57 – 1292

2. Moderate
Risk
(51–100)

– 113 158 4 275

3. High Risk
(101–200)

– 3 122 127 275

4. Very High
Risk (201+)

– – – 7 7

Total 492 859 337 138 1826
10t 1. Low Risk

(0–50)
54 1016 185 – 1255

2. Moderate
Risk
(51–100)

– 51 298 21 370

3. High Risk
(101–200)

– – 61 139 200

4. Very High
Risk (201+)

– – – 1 1

Total 54 1067 544 161 1826
11t 1. Low Risk

(0–50)
120 904 151 9 1184

2. Moderate
Risk
(51–100)

– 159 306 9 474

3. High Risk
(101–200)

– – 90 76 166

4. Very High
Risk (201+)

– – – 2 2

Total 120 1063 547 96 1826
12t 1. Low Risk

(0–50)
304 725 22 – 1051

2. Moderate
Risk
(51–100)

– 431 125 8 564

3. High Risk
(101–200)

– 7 129 70 206

4. Very High
Risk (201+)

– – – 5 5

Total 304 1163 276 83 1826
52t 1. Low Risk

(0–50)
402 641 41 – 1084

2. Moderate
Risk
(51–100)

– 227 162 3 392

3. High Risk
(101–200)

– 13 207 106 326

4. Very High
Risk (201+)

– – – 24 24

Table 4 (continued )

AQHI Category / Number of Days

Station Thai AQI
Category

1. Low
Risk
(1–3)

2. Moderate
Risk (4–6)

3. High
Risk
(7–10)

4. Very
High
Risk
(10+)

Total

Total 402 881 410 133 1826
54t 1. Low Risk

(0–50)
46 533 75 – 654

2. Moderate
Risk
(51–100)

5 368 312 3 688

3. High Risk
(101–200)

– 31 290 140 461

4. Very High
Risk (201+)

– – – 23 23

Total 51 932 677 166 1826
59t 1. Low Risk

(0–50)
316 830 162 – 1308

2. Moderate
Risk
(51–100)

– 78 218 19 315

3. High Risk
(101–200)

– – 87 113 200

4. Very High
Risk (201+)

– – – 3 3

Total 316 908 467 135 1826
59ts 1. Low Risk

(0–50)
317 810 22 – 1149

2. Moderate
Risk
(51–100)

– 295 193 5 493

3. High Risk
(101–200)

– 3 131 49 183

4. Very High
Risk (201+)

– – – 1 1

Total 317 1108 346 55 1826
61t 1. Low Risk

(0–50)
139 871 189 2 1201

2. Moderate
Risk
(51–100)

– 80 248 40 368

3. High Risk
(101–200)

– 2 91 158 251

4. Very High
Risk (201+)

– – – 6 6

Total 139 953 528 206 1826
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